Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.145
Filtrar
1.
Biophys Chem ; 309: 107233, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579435

RESUMO

Emodin is a natural anthraquinone derivative found in nature, widely known as an herbal medicine. Here, the partition, location, and interaction of emodin with lipid membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) are experimentally investigated with different techniques. Our studies have considered the neutral form of emodin (EMH) and its anionic/deprotonated form (EM-), and their interaction with a more and less packed lipid membrane, DMPC at the gel and fluid phases, respectively. Though DSC results indicate that the two species, EMH and EM-, similarly disrupt the packing of DMPC bilayers, spin labels clearly show that EMH causes a stronger bilayer disruption, both in gel and fluid DMPC. Fluorescence spectroscopy shows that both EMH and EM- have a high affinity for DMPC: the binding of EM- to both gel and fluid DMPC bilayers was found to be quite similar, and similar to that of EMH to gel DMPC, Kp = (1.4 ± 0.3)x103. However, EMH was found to bind twice more strongly to fluid DMPC bilayers, Kp = (3.2 ± 0.3)x103. Spin labels and optical absorption spectroscopy indicate that emodin is located close to the lipid bilayer surface, and suggest that EM- is closer to the lipid/water interface than EMH, as expected. The present studies present a relevant contribution to the current understanding of the effect the two species of emodin, EMH and EM-, present on different microregions of an organism, as local pH values can vary significantly, can cause in a neutral lipid membrane, either more or less packed, liked gel and fluid DMPC, respectively, and could be extended to lipid domains of biological membranes.


Assuntos
Emodina , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Marcadores de Spin
2.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542936

RESUMO

Nanodiscs belong to a category of water-soluble lipid bilayer nanoparticles. In vivo nanodisc platforms are useful for studying isolated membrane proteins in their native lipid environment. Thus, the development of a practical method for nanodisc reconstruction has garnered consider-able research interest. This paper reports the self-assembly of a mixture of bio-derived cyclic peptide, surfactin (SF), and l-α-dimyristoylphosphatidylcholine (DMPC). We found that SF induced the solubilization of DMPC multilamellar vesicles to form their nanodiscs, which was confirmed by size-exclusion chromatography, dynamic light scattering, and transmission electron microscopy analyses. Owing to its amphiphilic nature, the self-assembled structure prevents the exposure of the hydrophobic lipid core to aqueous media, thus embedding ubiquinol (CoQ10) as a hydrophobic model compound within the inner region of the nanodiscs. These results highlight the feasibility of preparing nanodiscs without the need for laborious procedures, thereby showcasing their potential to serve as promising carriers for membrane proteins and various organic compounds. Additionally, the regulated self-assembly of the DMPC/SF mixture led to the formation of fibrous architectures. These results show the potential of this mixture to function as a nanoscale membrane surface for investigating molecular recognition events.


Assuntos
Nanopartículas , Nanoestruturas , Fosfolipídeos/química , Dimiristoilfosfatidilcolina/química , Nanopartículas/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Nanoestruturas/química
3.
Sci Rep ; 14(1): 4972, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424117

RESUMO

The 21-residue PGLa peptide is well known for antimicrobial activity attributed to its ability to compromize bacterial membranes. Using all-atom explicit solvent replica exchange molecular dynamics with solute tempering, we studied PGLa binding to a model anionic DMPC/DMPG bilayer at the high peptide:lipid ratio that promotes PGLa dimerization (a two peptides per leaflet system). As a reference we used our previous simulations at the low peptide:lipid ratio (a one peptide per leaflet system). We found that the increase in the peptide:lipid ratio suppresses PGLa helical propensity, tilts the bound peptide toward the bilayer hydrophobic core, and forces it deeper into the bilayer. Surprisingly, at the high peptide:lipid ratio PGLa binding induces weaker bilayer thinning, but deeper water permeation. We explain these effects by the cross-correlations between lipid shells surrounding PGLa that leads to a much diminished efflux of DMPC lipids from the peptide proximity at the high peptide:lipid ratio. Consistent with the experimental data the propensity for PGLa dimerization was found to be weak resulting in coexistence of monomers and dimers with distinctive properties. PGLa dimers assemble via apolar criss-cross interface and become partially expelled from the bilayer residing at the bilayer-water boundary. We rationalize their properties by the dimer tendency to preserve favorable electrostatic interactions between lysine and phosphate lipid groups as well as to avoid electrostatic repulsion between lysines in the low dielectric environment of the bilayer core. PGLa homedimer interface is predicted to be distinct from that involved in PGLa-magainin heterodimers.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Dimerização , Dimiristoilfosfatidilcolina/química , Água
4.
Arch Biochem Biophys ; 752: 109883, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38211638

RESUMO

Free fatty acids, like palmitic acid (PA), and xanthophyll pigments, like lutein (LUT) are the natural membrane compounds in plants. To study the effect of PA on LUT and their organization, a model membrane of 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC) enriched with 2 mol% PA and 1 mol% LUT was formed. Molecular mechanisms underlying the interaction between these two compounds were examined with application of molecular spectroscopy techniques, e.g., visible spectroscopy, electron paramagnetic resonance and Fourier transform infrared. We determined the monomeric/dimeric organization of LUT in the membrane. We proved that the presence of PA in the lipid phase facilitated and stabilized the formation of LUT structures in the membrane. Lutein with PA did not form strong molecular aggregates like H- and J-structures. We presented the simplified model membrane that could be a suitable representation of the physiological process of de-esterification of PA from LUT appearing in natural biomembranes in humans.


Assuntos
Luteína , Xantofilas , Humanos , Luteína/farmacologia , Luteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Ácidos Palmíticos , Lipídeos , Bicamadas Lipídicas/química , Dimiristoilfosfatidilcolina/química
5.
Biochim Biophys Acta Biomembr ; 1866(2): 184258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995846

RESUMO

Experimental binding free energies of 27 adamantyl amines against the influenza M2(22-46) WT tetramer, in its closed form at pH 8, were measured by ITC in DPC micelles. The measured Kd's range is ~44 while the antiviral potencies (IC50) range is ~750 with a good correlation between binding free energies computed with Kd and IC50 values (r = 0.76). We explored with MD simulations (ff19sb, CHARMM36m) the binding profile of complexes with strong, moderate and weak binders embedded in DMPC, DPPC, POPC or a viral mimetic membrane and using different experimental starting structures of M2. To predict accurately differences in binding free energy in response to subtle changes in the structure of the ligands, we performed 18 alchemical perturbative single topology FEP/MD NPT simulations (OPLS2005) using the BAR estimator (Desmond software) and 20 dual topology calculations TI/MD NVT simulations (ff19sb) using the MBAR estimator (Amber software) for adamantyl amines in complex with M2(22-46) WT in DMPC, DPPC, POPC. We observed that both methods with all lipids show a very good correlation between the experimental and calculated relative binding free energies (r = 0.77-0.87, mue = 0.36-0.92 kcal mol-1) with the highest performance achieved with TI/MBAR and lowest performance with FEP/BAR in DMPC bilayers. When antiviral potencies are used instead of the Kd values for computing the experimental binding free energies we obtained also good performance with both FEP/BAR (r = 0.83, mue = 0.75 kcal mol-1) and TI/MBAR (r = 0.69, mue = 0.77 kcal mol-1).


Assuntos
Influenza Humana , Bicamadas Lipídicas , Humanos , Bicamadas Lipídicas/química , Influenza Humana/metabolismo , Simulação de Dinâmica Molecular , Aminas , Dimiristoilfosfatidilcolina/química , Antivirais/farmacologia
6.
Biophys J ; 123(1): 68-79, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37978799

RESUMO

Measuring protein thermostability provides valuable information on the biophysical rules that govern the structure-energy relationships of proteins. However, such measurements remain a challenge for membrane proteins. Here, we introduce a new experimental system to evaluate membrane protein thermostability. This system leverages a recently developed nonfluorescent membrane scaffold protein to reconstitute proteins into nanodiscs and is coupled with a nano-format of differential scanning fluorimetry (nanoDSF). This approach offers a label-free and direct measurement of the intrinsic tryptophan fluorescence of the membrane protein as it unfolds in solution without signal interference from the "dark" nanodisc. In this work, we demonstrate the application of this method using the disulfide bond formation protein B (DsbB) as a test membrane protein. NanoDSF measurements of DsbB reconstituted in dark nanodiscs loaded with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phosphorylglycerol (DMPG) lipids show a complex biphasic thermal unfolding pattern with a minor unfolding transition followed by a major transition. The inflection points of the thermal denaturation curve reveal two distinct unfolding midpoint melting temperatures (Tm) of 70.5°C and 77.5°C, consistent with a three-state unfolding model. Further, we show that the catalytically conserved disulfide bond between residues C41 and C130 drives the intermediate state of the unfolding pathway for DsbB in a DMPC and DMPG nanodisc. To extend the utility of this method, we evaluate and compare the thermostability of DsbB in different lipid environments. We introduce this method as a new tool that can be used to understand how compositionally and biophysically complex lipid environments drive membrane protein stability.


Assuntos
Dimiristoilfosfatidilcolina , Proteínas de Membrana , Dimiristoilfosfatidilcolina/química , Temperatura , Fluorometria , Dissulfetos , Bicamadas Lipídicas/química
7.
Biochim Biophys Acta Biomembr ; 1866(1): 184230, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37704040

RESUMO

Nanodiscs are binary discoidal complexes of a phospholipid bilayer circumscribed by belt-like helical scaffold proteins. Using coarse-grained and all-atom molecular dynamics simulations, we explore the stability, size, and structure of nanodiscs formed between the N-terminal domain of apolipoprotein E3 (apoE3-NT) and variable number of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) molecules. We study both parallel and antiparallel double-belt configurations, consisting of four proteins per nanodisc. Our simulations predict nanodiscs containing between 240 and 420 DMPC molecules to be stable. The antiparallel configurations exhibit an average of 1.6 times more amino acid interactions between protein chains and 2 times more ionic contacts, compared to the parallel configuration. With one exception, DMPC order parameters are consistently larger in the antiparallel configuration than in the parallel one. In most cases, the root mean square deviation of the positions of the protein backbone atoms is smaller in the antiparallel configuration. We further report nanodisc size, thickness, radius of gyration, and solvent accessible surface area. Combining all investigated parameters, we hypothesize the antiparallel protein configuration leading to more stable and more rigid nanodiscs than the parallel one.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Apolipoproteína E3 , Bicamadas Lipídicas/química , Dimiristoilfosfatidilcolina/química , Fosfolipídeos/química , Proteínas
8.
Biochim Biophys Acta Biomembr ; 1866(3): 184266, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38151198

RESUMO

This work describes the electrochemical studies on the interactions between V57G mutant of human cystatin C (hCC V57G) and membrane bilayer immobilized on the surface of a gold electrode. The electrode was modified with 6-mercaptohexan-1-ol (MCH) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). DMPC was used as a membrane mimetic for monitoring electrochemical changes resulting from the interactions between the functionalized electrode surface and human cystatin C. The interactions between the modified electrode and hCC V57G were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in a phosphate buffered saline (PBS) containing Fe(CN)63-/4- as a redox probe. The electrochemical measurements confirm that fabricated electrode is sensitive to hCC V57G at the concentration of 1 × 10-14 M. The incubation studies carried out at higher concentrations resulted in insignificant changes observed in cyclic voltammetry and electrochemical impedance spectroscopy measurements. The calculated values of surface coverage θR confirm that the electrode is equally covered at higher concentrations of hCC V57G. Measurements of wettability and surface free energy made it possible to determine the influence of individual structural elements of the modified gold electrode on its properties, and thus allowed to understand the nature of the interactions. Contact angle values confirmed the results obtained during electrochemical measurements, indicating the sensitivity of the electrode towards hCC V57G at the concentration of 1 × 10-14 M. In addition, the XPS spectra confirmed the successful anchoring of hCC V57G to the DMPC-functionalized surface.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Humanos , Bicamadas Lipídicas/química , Dimiristoilfosfatidilcolina/química , Ouro/química , Cistatina C , Eletrodos
9.
Langmuir ; 39(42): 14958-14968, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37815275

RESUMO

Osteoarthritis is caused by degeneration of the cartilage, which covers the bone ends of the joints and is decorated with an oligolamellar phospholipid (PL) bilayer. The gap between the bone ends is filled with synovial fluid mainly containing hyaluronic acid (HA). HA and PLs are supposed to reduce friction and protect the cartilage from wear in joint movement. However, a detailed understanding of the molecular mechanisms of joint lubrication is still missing. Previously, we found that aqueous solutions of HA and poly(allylamine hydrochloride) (PAH), the latter serving as a polymeric analogue to HA, adsorb onto the headgroups of surface-bound 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) oligobilayers and significantly enhance their stability with respect to shear forces, typically occurring in joint movement. We now investigated the precise location of PAH chains across the lipid films in neutron reflectivity measurements, as bridging of the oligobilayers by polyelectrolytes (PEs) might be the cause for their improved mechanical stability. In a first set of experiments, we used hydrogenated PAH and chain-deuterated DMPC (DMPC-d54) to improve the contrast between the lipids and potentially intruding PAH. However, due to difficulties in distinguishing between incorporation of water and PAH, penetration into the lipid chain region could hardly be proven quantitatively. Therefore, we designed a more elaborate experiment based on mixed films of DMPC-d54 and hydrogenated DMPC, which is insensitive to water penetration into the films. Beside facilitating a detailed structural characterization of the oligolamellar system, this elaborate approach showed that PAH adsorbs to the DMPC heads and penetrates the lipid tail strata. No PAH was found in the lipid head strata, which excludes bridging of several lipid bilayers by the PE chains. The data are consistent with the assumption that PAH bridges are formed between the headgroups of two adjacent bilayers and contribute to the enhanced mechanical stability.


Assuntos
Dimiristoilfosfatidilcolina , Fosfolipídeos , Dimiristoilfosfatidilcolina/química , Polieletrólitos , Fosfolipídeos/química , Bicamadas Lipídicas/química , Ácido Hialurônico/química , Água/química
10.
J Phys Chem B ; 127(44): 9496-9512, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37879075

RESUMO

Improving drug delivery efficiency to solid tumor sites is a central challenge in anticancer therapeutic research. Our previous experimental study (Guo et al., Nat. Commun. 2018, 9, 130) showed that soft, elastic liposomes had increased uptake and accumulation in cancer cells and tumors in vitro and in vivo respectively, relative to rigid particles. As a first step toward understanding how liposomes' molecular structure and composition modulates their elasticity, we performed all-atom and coarse-grained classical molecular dynamics (MD) simulations of lipid bilayers formed by mixing a long-tailed unsaturated phospholipid with a short-tailed saturated lipid with the same headgroup. The former types of phospholipids considered were 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine (termed here DPMPC). The shorter saturated lipids examined were 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC), 1,2-didecanoyl-sn-glycero-3-phosphocholine (DDPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Several lipid concentrations and surface tensions were considered. Our results show that DOPC or DPMPC systems having 25-35 mol % of the shortest lipids DHPC or DDPC are the least rigid, having area compressibility moduli KA that are ∼10% smaller than the values observed in pure DOPC or DPMPC bilayers. These results agree with experimental measurements of the stretching modulus and lysis tension in liposomes with the same compositions. These mixed systems also have lower areas per lipid and form more uneven x-y interfaces with water, the tails of both primary and secondary lipids are more disordered, and the terminal methyl groups in the tails of the long lipid DOPC or DPMPC wriggle more in the vertical direction, compared to pure DOPC or DPMPC bilayers or their mixtures with the longer saturated lipid DLPC or DMPC. These observations confirm our hypothesis that adding increasing concentrations of the short unsaturated lipid DHPC or DDPC to DOPC or DPMPC bilayers alters lipid packing and thus makes the resulting liposomes more elastic and less rigid. No formation of lipid nanodomains was noted in our simulations, and no clear trends were observed in the lateral diffusivities of the lipids as the concentration, type of secondary lipid, and surface tension were varied.


Assuntos
Lipossomos , Simulação de Dinâmica Molecular , Lipossomos/química , Dimiristoilfosfatidilcolina/química , Fosforilcolina , Fosfolipídeos/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química
11.
Chemistry ; 29(72): e202302284, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37699127

RESUMO

Nature uses reactive components embedded in biological membranes to perform light-driven photosynthesis. Here, a model artificial photosynthetic system for light-driven hydrogen (H2 ) evolution is reported. The system is based on liposomes where amphiphilic ruthenium trisbipyridine based photosensitizer (RuC9 ) and the H2 evolution reaction (HER) catalyst [Mo3 S13 ]2- are embedded in biomimetic phospholipid membranes. When DMPC was used as the main lipid of these light-active liposomes, increased catalytic activity (TONCAT ~200) was observed compared to purely aqueous conditions. Although all tested lipid matrixes, including DMPC, DOPG, DPPC and DOPG liposomes provided similar liposomal structures according to TEM analysis, only DMPC yielded high H2 amounts. In situ scanning electrochemical microscopy (SECM) measurements using Pd microsensors revealed an induction period of around 26 minutes prior to H2 evolution, indicating an activation mechanism which might be induced by the fluid-gel phase transition of DMPC at room temperature. Stern-Volmer-type quenching studies revealed that electron transfer dynamics from the excited state photosensitizer are most efficient in the DMPC lipid environment giving insight for design of artificial photosynthetic systems using lipid bilayer membranes.


Assuntos
Bicamadas Lipídicas , Lipossomos , Bicamadas Lipídicas/química , Lipossomos/química , Dimiristoilfosfatidilcolina/química , Fármacos Fotossensibilizantes , Fosfolipídeos/química
12.
Biophys Chem ; 301: 107082, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544082

RESUMO

Curcumin, a plant polyphenol extracted from the Chinese herb turmeric, has gained widespread attention in recent years because of its multifunctional properties as antioxidant, antinflammatory, antimicrobial, and anticancer agent. Effects of the molecule on mitochondrial membranes properties have also been evidenced. In this work, the interaction of curcumin with models of mitochondrial membranes composed of dimyristoylphosphatidylcholine (DMPC) or mixtures of DMPC and 4 mol% tetramyristoylcardiolipin (TMCL) has been investigated by using biophysical techniques. Spectrophotometry and fluorescence allowed to determine the association constant and the binding energy of curcumin with pure DMPC and mixed DMPC/TMCL aqueous bilayers. The molecular organization of pure DMPC and cardiolipin-containing Langmuir monolayers at the air-water interface were investigated and the morphology of the monolayers transferred into mica substrates were characterized through atomic force microscopy (AFM). It is found that curcumin associates at the polar/apolar interface of the lipid bilayers and the binding is favored in the presence of cardiolipin. At 2 mol%, curcumin is well miscible with lipid monolayers, particularly with mixed DMPC/TMCL ones, where compact terraces formation characterized by a reduction of the surface roughness is observed in the AFM topographic images. At 10 mol%, curcumin perturbs the stability of DMPC monolayers and morphologically are evident terraces surrounded by cur aggregates. In the presence of TMCL, very few curcumin aggregates and larger compact terraces are observed. The overall results indicate that cardiolipin augments the incorporation of curcumin in model membranes highlighting the mutual interplay cardiolipin-curcumin in mitochondrial membranes.


Assuntos
Cardiolipinas , Curcumina , Cardiolipinas/química , Dimiristoilfosfatidilcolina/química , Curcumina/farmacologia , Bicamadas Lipídicas/química , Microscopia de Força Atômica
13.
J Phys Chem B ; 127(25): 5633-5644, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37315336

RESUMO

Time-resolved fluorescence spectroscopy in combination with differential scanning calorimetry (DSC) was used to study the chemical interactions that occur when l-phenylalanine is introduced to solutions containing phosphatidylcholine vesicles. Studies reported in this work address open questions about l-Phe's affinity for lipid vesicle bilayers, the effects of l-Phe partitioning on bilayer properties, l-Phe's solvation within a lipid bilayer, and the amount of l-Phe within that local solvation environment. DSC data show that l-Phe reduces the amount of heat necessary to melt saturated phosphatidylcholine bilayers from their gel to liquid-crystalline state but does not change the transition temperature (Tgel-lc). Time-resolved emission shows only a single l-Phe lifetime at low temperatures corresponding to l-Phe remaining solvated in aqueous solution. At temperatures close to Tgel-lc, a second, shorter lifetime appears that is assigned to l-Phe already embedded within the membrane that becomes hydrated as water starts to permeate the lipid bilayer. This new lifetime is attributed to a conformationally restricted rotamer in the bilayer's polar headgroup region and accounts for up to 30% of the emission amplitude. Results reported for dipalmitoylphosphatidylcholine (DPPC, 16:0) lipid vesicles prove to be general, with similar effects observed for dimyristoylphosphatidylcholine (DMPC, 14:0) and distearoylphosphatidylcholine (DSPC, 18:0) vesicles. Taken together, these results create a complete and compelling picture of how l-Phe associates with model biological membranes. Furthermore, this approach to examining amino acid partitioning into membranes and the resulting solvation forces points to new strategies for studying the structure and chemistry of membrane-soluble peptides and selected membrane proteins.


Assuntos
Bicamadas Lipídicas , Fenilalanina , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Membrana Celular , 1,2-Dipalmitoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/química , Varredura Diferencial de Calorimetria , Água
14.
Biophys Chem ; 300: 107061, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37307659

RESUMO

Alzheimer's disease remains largely unknown, and currently there is no complete cure for the disease. New synthetic approaches have been developed to create multi-target agents, such as RHE-HUP, a rhein-huprine hybrid which can modulate several biological targets that are relevant to the development of the disease. While RHE-HUP has shown in vitro and in vivo beneficial effects, the molecular mechanisms by which it exerts its protective effect on cell membranes have not been fully clarified. To better understand RHE-HUP interactions with cell membranes, we used synthetic membrane models and natural models of human membranes. For this purpose, human erythrocytes and molecular model of its membrane built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were used. The latter correspond to classes of phospholipids present in the outer and inner monolayers of the human erythrocyte membrane, respectively. X-ray diffraction and differential scanning calorimetry (DSC) results indicated that RHE-HUP was able to interact mainly with DMPC. In addition, scanning electron microscopy (SEM) analysis showed that RHE-HUP modified the normal biconcave shape of erythrocytes inducing the formation of echinocytes. Moreover, the protective effect of RHE-HUP against the disruptive effect of Aß(1-42) on the studied membrane models was tested. X-ray diffraction experiments showed that RHE-HUP induced a recovery in the ordering of DMPC multilayers after the disruptive effect of Aß(1-42), confirming the protective role of the hybrid.


Assuntos
Doença de Alzheimer , Membrana Eritrocítica , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Dimiristoilfosfatidilcolina/química , Fosfatidiletanolaminas/química , Eritrócitos , Microscopia Eletrônica de Varredura , Peptídeos/metabolismo , Difração de Raios X , Bicamadas Lipídicas/química
15.
Biophys Chem ; 297: 107014, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37027969

RESUMO

Small angle X-ray scattering measurements under ambient conditions (T ≈ 294 K) provide evidence for the formation of separate domains in a ternary, mixed phospholipid ([DMPE]/[DMPC] = 3/1) / cholesterol model bilayer membrane. As we interpret these results, the domains contain cholesterol and DMPC, with which cholesterol is known to preferentially interact in a binary model membrane (solubility limit, mol fraction cholesterol 0.5), as compared to DMPE (solubility limit, mol fraction cholesterol 0.45). The solubility limit for the ternary system is mol fraction cholesterol 0.2-0.3. Although literature EPR spectra find that non-crystalline, cholesterol bilayer domains may be present even prior to the observation of cholesterol crystal diffraction, X-ray scattering cannot detect their presence.


Assuntos
Dimiristoilfosfatidilcolina , Bicamadas Lipídicas , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Solubilidade , Raios X , Colesterol/química , Difração de Raios X
16.
Artif Cells Nanomed Biotechnol ; 51(1): 192-204, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37052886

RESUMO

Bee propolis has been used in alternative medicine to treat various diseases. Due to its limited water solubility, it is often used in combination with alcohol solvents, causing skin irritation and immune response. To solve this, the new drug delivery system, based on the lipid nanodiscs of 1,2-dimyristoyl-sn-glycero-3-phosphochline (DMPC) and poly(styrene-alt-maleic acid) (PSMA), were created in an aqueous media. At the excess polymer concentrations, the PSMA/DMPC complexation produced the very fine nanoparticles (18 nm). With the increased molar ratio of styrene to maleic acid (St/MA) in the copolymer structure, the lipid nanodisc showed the improved encapsulation efficiency (EE%), comparing to their corresponding aqueous formulations. The maximum value had reached to around 20% when using the 2:1 PSMA precursor. Based on the cytotoxicity test, these nanoparticles were considered to be non-toxic over the low dose administration region (<78 µg/mL). Instead, they possessed the ability to promote the Vero cell growth. The new PSMA/DMPC nanovesicles could thus be used to improve aqueous solubility and therapeutic effects of poorly water-soluble drugs, thus extending their use in modern therapies.


New biomimetic approach for propolis encapsulation was developed with no use of organic solvent.Propolis antioxidants were recovered directly into water-soluble formats.The very fine lipid nanodiscs showed impressive shelf-life stability and tuneable drug-loading capacity.


Assuntos
Própole , Própole/farmacologia , Dimiristoilfosfatidilcolina/química , Poliestirenos/química , Maleatos/química , Polímeros/química , Água
17.
Chem Phys Lipids ; 252: 105293, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931584

RESUMO

Glycoalkaloids are secondary metabolites produced by plants that aid in their protection from pathogens and pests. They are known to form 1:1 complexes with 3ß-hydroxysterols such as cholesterol causing membrane disruption. So far, the visual evidence showcasing the complexes formed between glycoalkaloids and sterols in monolayers has been mainly restricted to some earlier studies using Brewster angle microscopy which were of low resolution showing the formation of floating aggregates of these complexes. This study is aimed at using atomic force microscopy (AFM) for topographic and morphological analysis of the aggregates of these sterol-glycoalkaloid complexes. Langmuir-Blodgett (LB) transfer of mixed monolayers of the glycoalkaloid α-tomatine, sterols, and lipids in varying molar ratios onto mica followed by AFM examination was performed. The AFM method allowed visualization of the aggregation of sterol-glycoalkaloid complexes at nanometer resolution. While aggregation was observed in mixed monolayers of α-tomatine with cholesterol and in mixed monolayers with coprostanol, no sign of complexation was observed for the mixed monolayers of epicholesterol and α-tomatine, confirming their lack of interaction found in prior monolayer studies. Aggregates were observed in transferred monolayers of ternary mixtures of α-tomatine with cholesterol and the phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or egg sphingomyelin (egg SM). The formation of aggregates was found to be less prevalent for mixed monolayers of DMPC and cholesterol containing α-tomatine than it was for mixed monolayers containing egg SM and cholesterol with α-tomatine. The observed aggregates were generally elongated structures, of a width ranging from about 40-70 nm.


Assuntos
Fitosteróis , Esteróis , Esteróis/química , Microscopia de Força Atômica , Dimiristoilfosfatidilcolina/química , Colesterol/química , Esfingomielinas/química
18.
J Phys Chem B ; 127(11): 2475-2487, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36913407

RESUMO

Small bilayer lipid aggregates such as bicelles provide useful isotropic or anisotropic membrane mimetics for structural studies of biological membranes. We have shown previously by deuterium NMR that a wedge-shaped amphiphilic derivative of trimethyl ßcyclodextrin anchored in deuterated DMPC-d27 bilayers through a lauryl acyl chain (TrimßMLC) is able to induce magnetic orientation and fragmentation of the multilamellar membranes. The fragmentation process fully detailed in the present paper is observed with 20% cyclodextrin derivative below 37 °C, where pure TrimßMLC self-assembles in water into large giant micellar structures. After deconvolution of a broad composite 2H NMR isotropic component, we propose a model where the DMPC membranes are progressively disrupted by TrimßMLC into small and large micellar aggregates depending whether they are extracted from the outer or inner layers of the liposomes. Below the fluid-to-gel transition of pure DMPC-d27 membranes (Tc = 21.5 °C), the micellar aggregates vanish progressively until complete extinction at 13 °C, with a probable release of pure TrimßMLC micelles leaving lipid bilayers in the gel phase doped with only a small amount of the cyclodextrin derivative. Bilayer fragmentation between Tc and 13 °C was also observed with 10% and 5% of TrimßMLC, with NMR spectra suggesting possible interactions of micellar aggregates with fluid-like lipids of the Pß' ripple phase. No membrane orientation and fragmentation was detected with unsaturated POPC membranes, which are able to accommodate the insertion of TrimßMLC without important perturbation. The data are discussed in relation to the formation of possible DMPC bicellar aggregates such as those known to occur after insertion of dihexanoylphosphatidylcholine (DHPC). These bicelles are in particular associated with similar deuterium NMR spectra exhibiting identical composite isotropic components which were never characterized before.


Assuntos
Ciclodextrinas , Ciclodextrinas/química , Dimiristoilfosfatidilcolina/química , Deutério , Bicamadas Lipídicas/química , Membrana Celular/química
19.
Soft Matter ; 19(10): 1882-1889, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36799359

RESUMO

Functionalizing silica nanoparticles with a lipid bilayer shell is a common first step in fabricating drug delivery and biosensing devices that are further decorated with other biomolecules for a range of nanoscience applications and therapeutics. Although the molecular structure and dynamics of lipid bilayers have been thoroughly investigated on larger 100 nm-1 µm silica spheres where the lipid bilayer exhibits the typical Lα bilayer phase, the molecular organization of lipids assembled on mesoscale (4-100 nm diameter) nanoparticles is scarce. Here, DSC, TEM and 2H and 31P solid-state NMR are implemented to probe the organization of 1,2-dipalmitoyl-d54-glycero-3-phosphocholine (DMPC-d54) assembled on mesoscale silica nanoparticles illustrating a significant deviation from Lα bilayer structure due to the increasing curvature of mesoscale supports. A biphasic system is observed that exhibits a combination of high-curvature, non-lamellar and lamellar phases for mesoscale (<100 nm) supports with evidence of an interdigitated phase on the smallest diameter support (4 nm).


Assuntos
Bicamadas Lipídicas , Nanopartículas , Bicamadas Lipídicas/química , Dimiristoilfosfatidilcolina/química , Dióxido de Silício/química , Estrutura Molecular , Nanopartículas/química
20.
Langmuir ; 39(10): 3569-3579, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36854196

RESUMO

Different amphiphilic co-polymers have been introduced to produce polymer-lipid particles with nanodisc structure composed of an inner lipid bilayer and polymer chains self-assembled as an outer belt. These particles can be used to stabilize membrane proteins in solution and enable their characterization by means of biophysical methods, including small-angle X-ray scattering (SAXS). Some of these co-polymers have also been used to directly extract membrane proteins together with their associated lipids from native membranes. Styrene/maleic acid and diisobutylene/maleic acid are among the most commonly used co-polymers for producing polymer-lipid particles, named SMALPs and DIBMALPs, respectively. Recently, a new co-polymer, named Glyco-DIBMA, was produced by partial amidation of DIBMA with the amino sugar N-methyl-d-glucosamine. Polymer-lipid particles produced with Glyco-DIBMA, named Glyco-DIBMALPs, exhibit improved structural properties and stability compared to those of SMALPs and DIBMALPs while retaining the capability of directly extracting membrane proteins from native membranes. Here, we characterize the structure and lipid composition of Glyco-DIBMALPs produced with either 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Glyco-DIBMALPs were also prepared with mixtures of either POPC or DMPC and cholesterol at different mole fractions. We estimated the lipid content in the Glyco-DIBMALPs and determined the particle structure and morphology by SAXS. We show that the Glyco-DIBMALPs are nanodisc-like particles whose size and shape depend on the polymer/lipid ratio. This is relevant for designing nanodisc particles with a tunable diameter according to the size of the membrane protein to be incorporated. We also report that the addition of >20 mol % cholesterol strongly perturbed the formation of Glyco-DIBMALPs. Altogether, we describe a detailed characterization of the Glyco-DIBMALPs, which provides relevant inputs for future application of these particles in the biophysical investigation of membrane proteins.


Assuntos
Dimiristoilfosfatidilcolina , Bicamadas Lipídicas , Dimiristoilfosfatidilcolina/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Bicamadas Lipídicas/química , Maleatos/química , Polímeros/química , Proteínas de Membrana/química , Colesterol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...